layout: false class: split-33 with-thick-border border-black <style type="text/css"> /* custom.css */ :root{ --main-color1: #2f4c7a; --main-color2: #bcbddc; --main-color3: #efedf5; --main-color4: #9DDAE5; --text-color3: black; --text-color4: black; --code-inline-color: #4e5054; --link-color: #006CAB; --logo: url(http://www.fragiletoagile.com.au/wp-content/uploads/2018/02/monash-university-logo-transparent.png); } .large { font-size: 150% } .largeish { font-size: 120% } .summarystyle { font-size: 150%; line-height:150%;} </style> .column[.bottom_abs.content[ <img src="plots/monash-university-logo-transparent.png" width="70%"> ]] .column.bg-main1[.content.vmiddle[.center[ # High-dimensional data visualisation with tours <br> <br> # Ursula Laa ### School of Physics and Astronomy ### & ### Department of Econometrics and Business Statistics ]]] --- layout: false class: split-66 .column[.content[ # A bit about me <br> <img src="figure/map1-1.png" style="display: block; margin: auto;" /> ]] .column[.content.vmiddle[.center[ <img src="plots/IMG_5105.jpg" width="55%"> <br> <img src="plots/T1tttt_ICHEP2014_All.pdf" width="75%"> ]]] --- layout: false class: split-66 .column[.content[ # A bit about me <br> <img src="figure/map2-1.png" style="display: block; margin: auto;" /> ]] .column[.content.vmiddle[.center[ <img src="plots/l_snu.png" width="75%"> <br> <img src="plots/Rmax_allowed_glu_N1_BinoLSP.png" width="95%"> ]]] --- layout: false class: split-66 .column[.content[ # A bit about me <br> <img src="figure/map3-1.png" style="display: block; margin: auto;" /> ]] .column[.content.vmiddle[.center[ <img src="plots/tourr.png" width="40%"> <img src="plots/plotly.png" width="40%"> <br> <img src="plots/flyingBirds.gif" width="60%" height="60%" style="display: block; margin: auto;" /> ]]] --- class: middle center bg-main1 # Projections --- ## Projections are everywhere <br> -- .large[The most common projections are from our **3 dimensional** world onto a **2 dimensional** plane] -- <br> .large[Examples: * Photographs * 3D objects on 2D screens * Shadows ] -- <br> .large[We can fully understand the 3D object if we look at it from different angles, for example when we rotate the viewing angle of a 3D plot!] --- # We can understand the 3D shape from 2D projections <br> <br> .center[
] <br> Example video taken from [here](http://schloerke.com/geozoo/) --- class: middle center # Looking at 3D plots <br>
<br> .largeish[This is an example from [plotly](https://plot.ly/r/3d-scatter-plots/)] --- class: middle center bg-main1 # Beyond 3 dimensions --- # Going to 4 dimensions <br> -- .center[<img src="plots/Dimension_levels.svg" width="55%"> <br> from [here](https://en.wikipedia.org/wiki/File:Dimension_levels.svg)] <br> -- .large[We can imagine a 4D cube by extending a 3D cube into a 4th dimension. That is also how we think about high dimensions in data, each dimension adds an orthogonal axis.] -- .large[And we can look at different 2D views with a grand tour. Each plane corresponds to a **projection** from the original space down to two dimensions, and we project each data point onto the same plane.] --- # Grand tour showing a 4D cube <br> <br> .center[
] <br> Example videos taken from [here](http://schloerke.com/geozoo/) --- # Grand tour showing a 5D cube <br> <br> .center[
] <br> .large[This works for any number of dimensions and we can learn about the shape in the high dimensional space.] --- # Shapes in 5D .largeish[Comparing samples on the surface of a sphere vs the faces of a cube in 5D. We can understand differences between the shapes through the interpolated 2D projections!] -- .center[ <iframe src="s5.html" width="800" height="500" scrolling="yes" seamless="seamless" frameBorder="0"> </iframe> ] --- class: middle center bg-main1 # Grand tour data displays --- # 2D scatter plot display .large[ * All data points are projected onto 2D plane * Draw scatter plot of the data points * Represent the current projection as "axes" ] .center[ <img src="tour2d.gif" width="40%" height="40%" style="display: block; margin: auto;" /> ] --- class: split-two .column[.content[ # Many other dispay types are possible .large[Example displays for 1 or 3 dimensional projections] <img src="tour1d.gif" width="70%" height="70%" style="display: block; margin: auto;" /> ]] .column.column[.content.vmiddle[ <img src="tour3d.gif" width="70%" height="70%" style="display: block; margin: auto;" /> ]] --- class: middle center bg-main1 # Using tours in (physics) research --- class: split-two .column[.content[ # Exploring structure in high dimensions <br> .large[Tour visualisations are a great way to explore structure beyond 2 or 3 dimensions. Typical applications include: * Identifying and comparing clusters * Find multivariate outliers * Identifying complex relations between parameters (beyond simple linear correlations) ] <br> .largeish[Simple example: flea dataset, comparing 3 species on 6 measures] ]] .column[.content.vmiddle[ <img src="plots/flea.gif" width="90%" height="90%" style="display: block; margin: auto;" /> ]] --- # A less simple example .largeish[Comparing particle physics measurements based on what they tell us about the structure of the proton, in a 6 dimensional parameter space. We can group them into three different types of experiments, but the visualisation reveals much more structure than that!] <br> -- <img src="plots/allcenter.gif" width="40%" height="40%" style="display: block; margin: auto;" /> --- layout: false class: split-33 with-border border-black .column[.content.vmiddle[ # Going into details <br> .large[Focusing on one group, we can for example compare in detail the distributions obtained for different experiments, visually identify outlying points] ]] .column[.content.vmiddle[.center[ <img src="plots/jetCluster.gif" width="70%" height="70%" style="display: block; margin: auto;" /> ]]] --- class: bg-main1 # Summary .large[▷ Projections and the grand tour allow to examine high dimensional data distributions in detail] -- .large[▷ We can learn about shapes in high dimensional space, compare groups or identify outlying points] -- .large[▷ This can provide valuable insights and intuition for researchers] <br> -- #Thanks! .large[These slides are made with R markdown using xaringan and the Kunoichi theme.] <br> -- # References .large[See https://uschilaa.github.io for references and additional resources!]