Index evaluation timing may depend on the data distribution, we evaluate the computing time for a set of different projections to get an overview of the distribution of computing times.

timeSequence(d, t, idx, pmax)

Arguments

d

Input data in matrix format

t

List of projection matrices (e.g. interpolated tour path)

idx

Index function

pmax

Maximum number of projections to evaluate (cut t if longer than pmax)

Value

numeric vector containing all distances

Examples

# \donttest{ d <- spiralData(4, 1000) t <- purrr::rerun(10, tourr::basis_random(4)) idx <- scagIndex("Skinny") timeSequence(d, t, idx, 10)
#> t i #> 1 0.04 1 #> 2 0.05 2 #> 3 0.05 3 #> 4 0.03 4 #> 5 0.07 5 #> 6 0.03 6 #> 7 0.06 7 #> 8 0.03 8 #> 9 0.03 9 #> 10 0.03 10
# }