Simulate and Compare Index Scale on Structured vs Noisy Data
ppi_scale.Rd
Performs simulations to compute a projection pursuit index on structured (sampled) data and on random noise, allowing a comparison of index scale across contexts.
Arguments
- data
A data frame or tibble with at least two numeric columns.
- index_fun
A function that takes two numeric vectors (
x
,y
) and returns a numeric scalar index.- n_sim
Integer. Number of simulations. Default is 100.
- n_obs
Integer. Number of observations per simulation. Default is 500.
- seed
Optional integer seed for reproducibility.
Value
A tibble with columns:
simulation
: simulation numbervar_i
,var_j
: variable namesvar_pair
: pair name as a stringsigma
: 0 for structured data, 1 for noisy dataindex
: index value returned byindex_fun
Examples
ppi_scale(data_gen("polynomial", degree = 3), scag_index("stringy"), n_sim = 10)
#> # A tibble: 60 × 6
#> simulation var_i var_j var_pair sigma index
#> <int> <chr> <chr> <chr> <dbl> <dbl>
#> 1 1 1 2 1-2 0 1
#> 2 1 1 2 1-2 1 0.708
#> 3 1 1 3 1-3 0 1
#> 4 1 1 3 1-3 1 0.743
#> 5 1 2 3 2-3 0 0.996
#> 6 1 2 3 2-3 1 0.743
#> 7 2 1 2 1-2 0 1
#> 8 2 1 2 1-2 1 0.687
#> 9 2 1 3 1-3 0 1
#> 10 2 1 3 1-3 1 0.720
#> # ℹ 50 more rows